Meghan C. Campbell, PhD Associate Professor March 14, 2019

Disclosures

No relevant financial interests to disclose.

- Research Support:
 - NIH, APDA, Michael J. Fox Foundation, BJH/ICTS
- Stock/Equity: NA
- Consulting: NA
- Speakers Bureau/Honoraria: NA

PD: Clinical Manifestations

Motor Function

- tremor
- rigidity
- bradykinesia
- postural instability

- walking
- facial expression
- voice
- handwriting

Non-Motor Features

- psychiatric disorders
- sleep disorders
- sense of smell
- constipation
- cognitive dysfunction

- What is cognition?
- How do we assess cognition?
- What cognitive problems can occur with PD?
- How do we know not age-related or AD?
- What causes it?
- How can we predict it?
- How do we treat or prevent it?

- What is cognition?
- How do we assess cognition?
- What cognitive problems can occur with PD?
- How do we know not age-related or AD?
- What causes it?
- How can we predict it?
- How do we treat or prevent it?

Cognitive Domains

- Attention focus and sustain attention
- Learning & Memory learn & retain new information; recall previous information
- Language production & comprehension
- Visual-Spatial Processing interpret, recognize, replicate visual & spatial information
- Executive Functioning- higher level processing e.g., decision-making, planning, multi-tasking

- What is cognition?
- How do we assess cognition?
- What cognitive problems can occur with PD?
- How do we know not age-related or AD?
- What causes it?
- How can we predict it?
- How do we treat or prevent it?

Cognitive Evaluation

- Clinical interview
- Brief screening
- Neuropsychological assessment

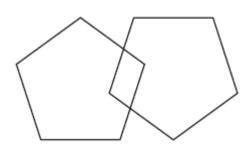
Neuropsychological Assessment

- What to expect
 - Brief interview
 - Series of tests some are like games & puzzles
 - Designed to assess a wide range of abilities
- Goal
 - Determine cognitive strengths & weaknesses
 - Determine possible change in cognition
- Don't stress, just do your best!

Cognitive Changes

- Cognitive Decline
 - can occur with normal aging
- Cognitive Impairment/Mild Cognitive Impairment
 - Deficits greater than expected for age
- Dementia
 - Cognitive deficits that interfere with daily activities

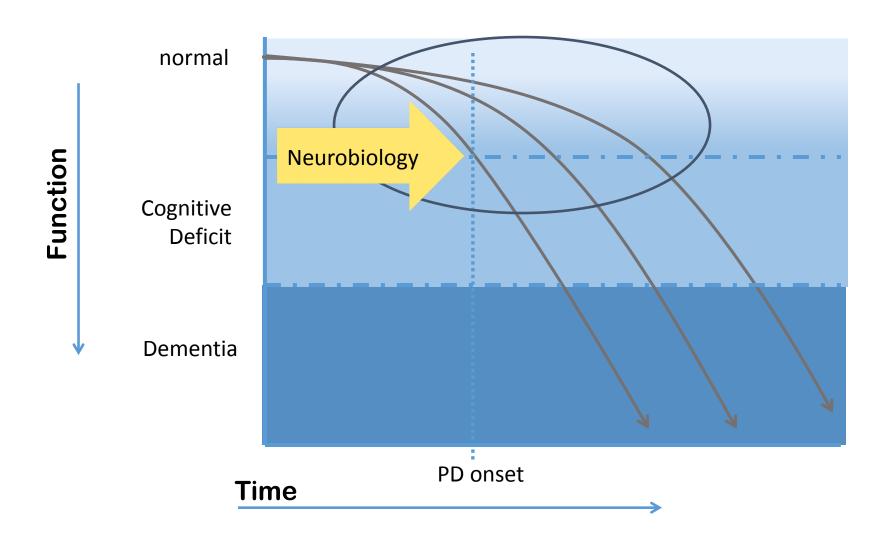
- What is cognition?
- How do we assess cognition?
- What cognitive problems can occur with PD?
- How do we know not age-related or AD?
- What causes it?
- How can we predict it?
- How do we treat or prevent it?


PD: Cognitive Profile

- Attention
 - sustained and selective attention
- Executive Functioning
 - information processing speed, decision-making, planning
- Memory
 - learning & recollection, but not with retention
 - prospective memory
- Visuospatial (VSP)
 - integrating complex visual information
 - copying simple visual stimuli
- Language
 - intact naming & comprehension
 - reduced verbal fluency

Memory

VSP



Cognitive Decline & Dementia with PD

- 2-6% increased risk of dementia compared to healthy aging
- At diagnosis, 25-30% of PD w/ cognitive deficits
- Approx. 50% will develop cognitive impairment w/in 5 yrs of diagnosis
- Approx. 30% will develop dementia w/in 3-5yrs of diagnosis
- Up to 80% will eventually develop dementia

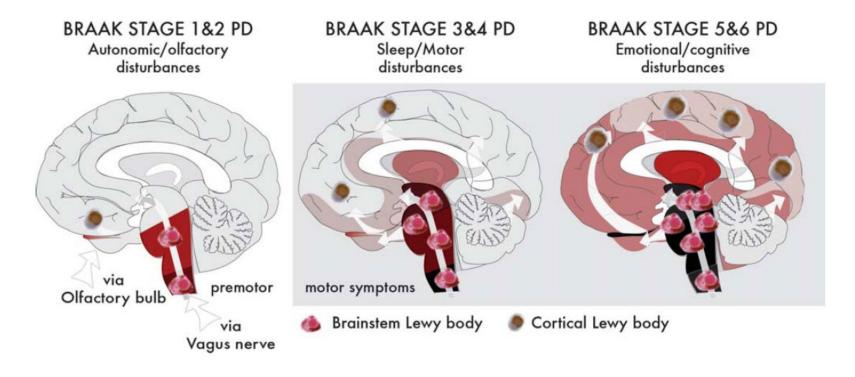
 This represents a major concern and challenge for people with PD and their families.

Cognitive Decline & Dementia with PD

- What is cognition?
- How do we assess cognition?
- What cognitive problems can occur with PD?
- How do we know not age-related or AD?
- What causes it?
- How can we predict it?
- How do we treat or prevent it?

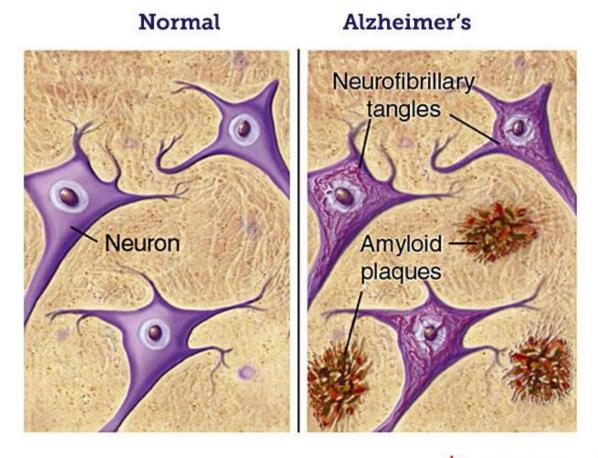
Baltimore Longitudinal Study of Aging

- Over 3,000 people tracked longitudinally since 1958
- Speed of learning, multi-tasking, and problem solving decline
- Visuospatial abilities and verbal fluency decline
- Naming and short-term memory decline
- General intelligence and procedural memory are preserved
- Vocabulary & comprehension maintained into 80's


Cognitive Deficits with Alzheimer Disease

- Memory
 - early, prominent memory deficit
 - impaired learning & retention
 - rapid forgetting
- Language
 - difficulty naming objects –forget the names of things
 - reduced verbal fluency
- Attention & Executive Function
- Visuospatial

- What is cognition?
- How do we assess cognition?
- What cognitive problems can occur with PD?
- How do we know not age-related or AD?
- What causes it?
- How can we predict it?
- How do we treat or prevent it?


PD Neuropathology

• Lewy Bodies (aggregated α -syn)

AD Neuropathology

- β-amyloid plaques
- Neurofibrillary tangles

PD Dementia: Proteinopathy

32 PD with dementia autopsy cases

- -ALL had αsyn Lewy bodies
- 38% only had αsyn
- 59% had α syn + A β plaques
- 3% (1) had α syn, A β , tau = PD+AD

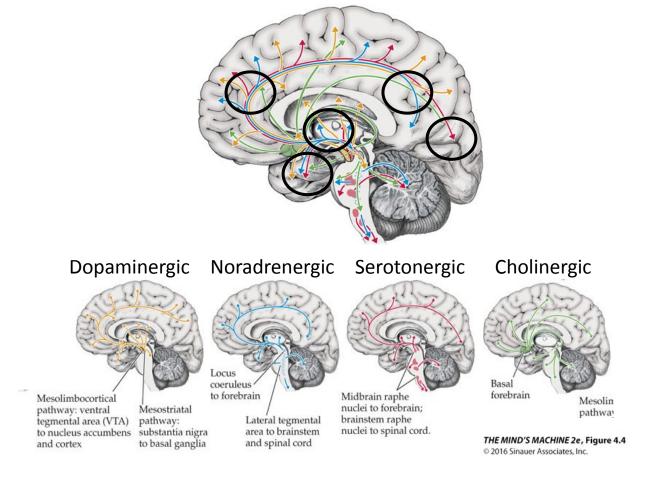
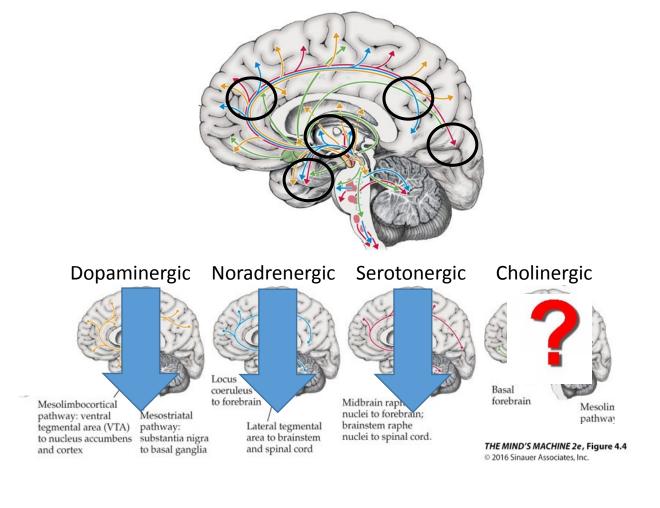

PD dementia is rarely due to AD!

Table 2. Comparison of Neuropathologic Lesions Among 3 Subgroups of Dementia Associated With Patients With Parkinson Disease						
Characteristic	Synuclein Only (n = 12)	Synuclein Plus Aβ (n = 19)	Synuclein Plus Aβ Plus Tau (n = 1)			
Braak Lewy body stage for synucleinopathy, mode (range)	6 (5-6)	6 (5-6)	6			
Braak amyloid stage for Aβ deposition, mode (range)	0 (0-1)	3 (2-3)	3			
Braak NFT stage for tauopathy, mode (range)	1 (1-4)	3 (1-4)	6			

PD Dementia: Neurochemistry

	Controls	PD with Dementia	P				
Demographics							
Participants, No.	6	15	NA				
Age at death, y	84 (70-100)	79 (71-93)	P = 0.51b				
Male/Female, No.	2/4	12/3	P = 0.04 °				
Clinical Characteristics of PD participants with dementia							
Age at PD diagnosis, y	NA	63 (54-82)	NA				
Duration of PD, y	NA	14 (8-27)	NA				
UPDRS-III score (OFF)	NA	44 (35-73.5)	NA				
LEDD, mg	NA	800 (0-1350)	NA				


- •NT/T: DA & DAT; 5-HT & SERT; NE; VAChT
- brain regions: caudate, ACG, hippocampus, amygdala, precuneus, VAC, MFG, IPL

PD Dementia: Neurochemistry

	Controls	PD with Dementia	Р				
Demographics							
Participants, No.	6	15	NA				
Age at death, y	84 (70-100)	79 (71-93)	P = 0.51b				
Male/Female, No.	2/4	12/3	P = 0.04 c				
Clinical Characteristics of PD participants with dementia							
Age at PD diagnosis, y	NA	63 (54-82)	NA				
Duration of PD, y	NA	14 (8-27)	NA				
UPDRS-III score (OFF)	NA	44 (35-73.5)	NA				
LEDD, mg	NA	800 (0-1350)	NA				

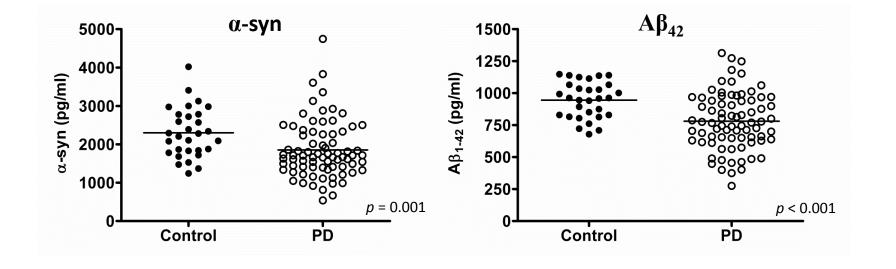
- •NT/T: DA & DAT; 5-HT & SERT; NE; VAChT
- brain regions: caudate, ACG, hippocampus, amygdala, precuneus, VAC, MFG, IPL

Other Possible Contributing Factors

- Sleep
- Hearing loss
- Psychiatric disorders depression, anxiety, apathy
- Medication side effects
- Abnormal hormone & vitamin levels
- Infection (e.g., UTI)
- Other health conditions diabetes, hypertension

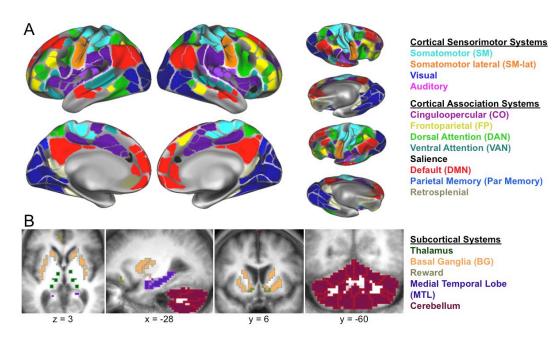
- What is cognition?
- How do we assess cognition?
- What cognitive problems can occur with PD?
- How do we know not age-related or AD?
- What causes it?
- How can we predict it?
- How do we treat/prevent it?

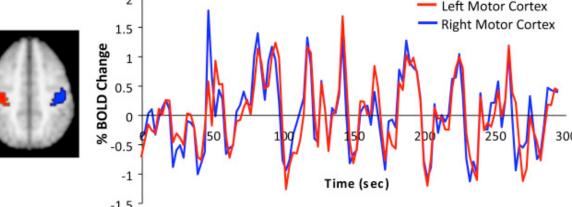
Protein & Imaging Biomakers in PD ("PIB" Study at WashU)


- Large sample of PD & healthy controls (N = 293)
- Followed longitudinally until death (N = 76) & brain donation
- In-person visits every 3 years:
 - •Comprehensive clinical exam motor, cognitive, psychiatric
 - •MRI structural & rs-BOLD
 - •PET PIB & VAT
 - Optional: LP & Blood Draw

Protein Aggregation and Neurotransmitter Deficits ("PAND" Study at WashU)

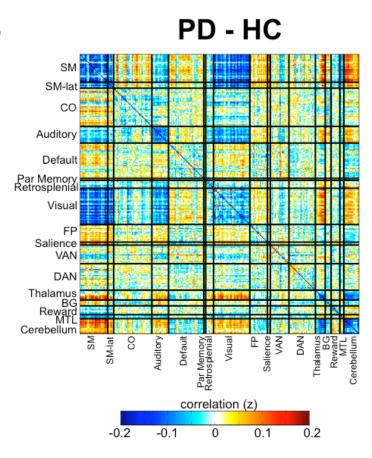
- Large sample of PD & healthy controls (N = 110)
- Followed longitudinally until death (N = 2) & brain donation
- In-person visits every 2 years:
 - •Comprehensive clinical exam motor, cognitive, psychiatric
 - •MRI structural & rs-BOLD
 - NO PET
 - Optional: LP & Blood Draw


- CSF proteins
- Functional Connectivity MRI (fcMRI)

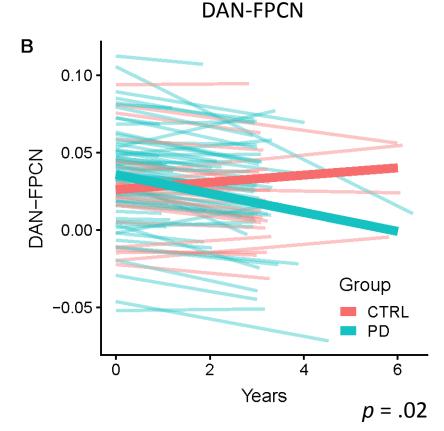

- CSF proteins
- fcMRI

- Both CSF αsyn & Aβ are significantly lower in PD
- Lower CSF asyn & AB = greater burden in the brain
- Occurs prior to dementia onset

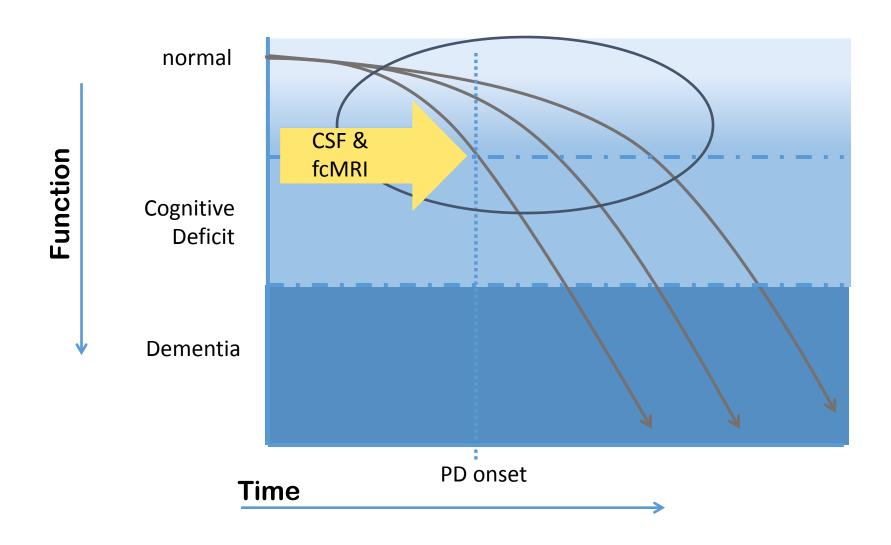
- CSF proteins
- fcMRI



- fcMRI = correlation of changes in brain activity between brain regions and networks
- Can be measured across many areas, covering the whole brain


CSF proteins

fcMRI


- Weaker fcMRI in PD compared to healthy controls (HC)
- •Select regions and networks, not a global effect
- Reduced fcMRI relates to worse motor & cognitive function

- CSF proteins
- fcMRI

Brain functional connectivity declines over time with PD, prior to dementia onset.

Cognitive Decline & Dementia with PD

- What is cognition?
- How do we assess cognition?
- What cognitive problems can occur with PD?
- How do we know not age-related or AD?
- What causes it?
- How can we predict it?
- How do we treat or prevent it?

Treatment

- We don't have a cure for PD or dementia yet...
 - But there is progress and hope!
- Only one FDA approved medication for PD dementia Exelon
- Behavioral interventions & prevention

Behavioral Interventions & Prevention

- Exercise & physical activity
- Engage in mental & social activities
- Good diet DASH, Mediterranean, MIND
- Get a good night's sleep!
- Cognitive strategies

Cognitive Strategies

- Minimize distraction
- Use reminders calendar, pill box, alerts on phone
- Simplify activities into smaller steps
- Maintain a regular routine
- Provide choices or yes/no options

Research Information

- Projects and programs to help people with PD deal with cognitive challenges in their daily lives
 - Work, home, family, community
 - Across the spectrum of cognitive decline

Principal Investigator: Erin Foster, PhD, OTD Research coordinator: Tasha Doty, MA (314) 362-7160; tdoty@wustl.edu

PIB & PAND longitudinal studies of PD & healthy aging

- Recruiting PD and healthy older adults
- Cognitive and motor testing
- MRI, PET, lumbar punctures (optional)
- Longitudinal study visits every 2-3 years

Principal Investigators: Meghan Campbell, PhD; Joel Paul Kotzbauer, PhD/MD; Joel Perlmutter, MD Research coordinators: Selma Avdagic (314-362-3483) and Kelly McVey (314-362-0420)

 $\underline{\text{NIL-PDpibstudy@email.wustl.edu}}$

NIL-PANDstudy@email.wustl.edu

Acknowledgments

Collaborators

- □ Joel S. Perlmutter, MD
- □ Paul T. Kotzbauer, MD/PhD
- □ Erin R. Foster, PhD, OTD
- □ Gammon Earhart, PhD
- □ Jay Maiti, PhD/MD
- □ Chandana Buddhala, PhD
- □ John O'Donnell, PhD
- □ Peter S. Myers, PhD
- Christina Lessov-Schlaggar, PhD
- □ Nigel Cairns, PhD
- □ Rick Perrin, MD/PhD

- □ Steve Petersen, PhD
- Caterina Gratton, PhD
- □ Avi Snyder, MD/PhD
- □ Bill Shannon, PhD
- Joshua Jackson, PhD

Research Team

- Nurse Coordinators: Johanna Hartlein, NP; Barb Merz; Katharine Cummings; Kelly McVey
- Research Coordinators: Phil Lintzenich, Thomas Belcher, Jenny Zen-Duan; Anja Pogarcic, Jennifer Petros, My Vu, Selma Avdagic
- Imaging Analysts: Jon Koller, Hugh Flores, Tunde Adeyamo
- LP Physicians: Scott Norris, MD, Mwiza Ushe, MD; Jay Maiti MD/PhD; John Younce, MD
- Lab Techs: Susan Loftin
- Undergraduate Army

