Deep Brain Stimulation and Movement Disorders

Farrokh Farrokhi, MD Neurosurgery

Maria Marsans, PA-C Neurosurgery

> Virginia Mason June 27, 2017

OBJECTIVES

Understand the role of Deep Brain Stimulation (DBS)
 in movement disorders

 Understand the rationale for patient selection, benefits as well as risks of DBS in movement disorders

HISTORY.....

- 46 AD: Application of electric ray (torpedo torpedo) to cranium to cure headaches
- 19th century: Aldini stimulated exposed cortex and evoked motor response (grimacing prisoner)
 - 1880s: topography studies by surgeon Horsley
- 1950s: eloquent mapping of sensory and motor cortices by Penfield and colleagues
- 1938: Electroshock by Cerletti for psychosis
- 1950s Electrical stim for pain, functional stim for behavioral disorders

• 1947 Spiegel and Wycis fashioned the first human sterotactic frame

 1949 Leksell fashions an arc-quadrant frame which still continues to be used

Early stimulation studies (1950s-60s)

- Delgado for seizures and psychosis
- Bektherva for hyperkinetic movement disorders
- Sem-Jacobsen for epilepsy and schizophrenia
- Cooper for epilepsy, cerebral palsy and spasticity
- Micro electrode recordings Abel-Fessard 1961
- 1967: Introduction of levodopa, political pressures—functional neurosurgery briefly takes a back seat

- 1991 Benabid, Blond and Siegfried report effects of thalamic DBS on tremor
- 1990s Laitinen DBS to Gpi for parkinsons
- 1994 Pollack and collegues demonstrated effects on STN DBS in Parkinsons
- FDA APPROVAL
 - 1997 ET
 - 2002 for PD (STN and GPi)
 - 2003 Humanitarian device exemption for dystonia (generalized and segmental)
 - 2009 HDE for OCD (ant limb IC)

NEUROSTIMULATION

MODULATION OF THE NERVOUS SYSTEM USING IMPLANTED/EXTERNAL DEVICES

TRANSCRANIAL MAGNETIC STIMULATION

http://etkinlab.stanford.edu/images/rTMScoil.jpg

CORTICAL STIMULATION

http://www.medgadget.com/2008/01/brain_stimulation_device_for_stroke_victims_fails_clinical_trial.html

DEEP BRAIN STIMULATION

http://professional.medtronic.com/pt/neuro/dbs-md/edu/presentations-downloads/index.htm#.WB4kaYWcHcw

CONDITIONS DBS IS USED FOR

FDA approved for Parkinson's & Essential tremor

Humanitarian device exemption (HDE) for Generalized/ segmental dystonia (genetic) and for OCD

MOTOR SYMPTOMS OF PARKINSONS

- Rigidity
- Tremor
- Bradykinesia
- Gait disorder

MOVEMENT DISORDERS AND THEIR IMPACT

PARKINSONS

- 1 MILLION people are currently diagnosed with PD in the United States
- 1 in 100 Americans over the age of 60
- 1.6% of Medicare beneficiaries

ESSENTIAL TREMOR:

- Most common movement disorder
- 0.4 to 3.9 % of the population, incidence maybe higher (Severe enough to warrant diagnosis)
- QUEST Scores higher than in PD
- DYSTONIA: limited data due to multiple forms

BASAL GANGLIA STRUCTURE

DBS-WHAT IS THE TARGET?

ANTERIOR LIMB INTERNAL CAPSULE- OCD

- THALAMUS-TREMOR
 GLOBUS PALLIDUS INTERNA- PARKINSONS/
 DYSTONIA
- SUBTHALAMIC NUCLEUS- PARKINSONS
- HYPOTHALAMUS- CLUSTER HEADACHE

http://web.stanford.edu/group/hopes/cgi-bin/hopes_test/sites/hopes/files/f_abl8bslgang.gif

STN vs. GPI

LANCET 2013

Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's disease: a randomized controlled trial.

INTERPRETATION:

Although there was no difference in the primary outcomes, findings suggest that STN could be the preferred target for DBS in patients with advanced Parkinson's disease

HOW DOES DBS WORK?

• Short answer----- We don't know!!

- Long answer
 - Initially thought to be similar to lesioning, inhibits electrical activity
 - Data suggests differential effects based on stim rate and location
 - High frequency stim works, frequencies lower than 50 Hz doesn't
 - Axon stimulation (excitatory-capsule) vs neuronal stim (inhibitory)
 - ? Modulation more than inhibition

WHY SHOULD YOU CONSIDER DBS

• PARKINSONS (PD):

- Tremor inadequately controlled by medications
- DBS with significant advantage over best medical therapy for motor fluctuations

On state without dyskinesias ~ 4hrs

Off state decreased by ~ 2-4 hrs

Improved PDQ 39 ~ 25%

Benefits sustained upto 10 yrs

ESSENTIAL TREMOR:

- better than standard meds, improves ADLs, functional impact (60% or more improvement in tremor scores)
- GENERALISED DYSTONIA (HDE) (limited data):
 - DYT-1 responds really well, role of meds in generalized dystonia again limited

PATIENT SELECTION

• PARKINSONS:

- PD and not Parkinson plus / drug induced parkinsonism
- Ideally with motor fluctuations and maximum medical therapy, though emerging data for early implantation (EARLY STIM)
- Not demented, screen mood disorders
- Comorbidities (cardiac/ vascular/ coagulation disorders)

• ESSENTIAL TREMOR:

- Tremor affecting quality of life/ function (moderate to severe tremor)
- Ideally should have tried first line meds (beta blockers/ primidone)
- Not demented

• DYSTONIA:

• Case by case, through IRB, ideally generalized/genetic torsion dystonia OTHE INFLUENCING FACTORS: age, poor levodopa response in PD, family/social support

EARLY STEROTACTIC SURGERY

2014 Virginia Maso

DBS PROCEDURE

Stage I – Implant electrode

- Frame placement
- CT with frame
- CT/MR fusion & targeting
- Micro-electrode recording
- Macro Stimulation
- Implantation

Stage II

Pulse Generator Placement

CURRENT DBS SURGERY OPTIONS

• AWAKE:

- Frame bases
 - With MER
- Frameless
 - With MER
- ASLEEP:
 - Frameless
 - MRI Guided
 - CT Guided

ROLE FOR MICRO-ELECTRODE RECORDINGS

- Target localization is a combination of anatomic and physiologic localization
 - Anatomic (MRI-CT fusion and coordinates)
 - Physiologic (confirms intended anatomic target)
- MER (microelectrode recording)
 - Allows for confirmation of intended functional target (Vim thalamus, dorsolateral STN, Gpi)
 - Allows intra operative revision of intended sterotactic plan

DBS TRAJECTORY

http://cmpl.columbia.edu/wp-content/uploads/2015/11/MER_trajectory.jpg

MICROELECTRODE RECORDINGS

MACROSTIMULATION

STIMULATION THROUGH THE LEADS:

- Goal to map out effects (improve tremor, rigidity)
- Map side effects (capsule, medial lemniscus, 3 rd nerve fascicles)
- In some cases, mainly useful to map side effects (such as Dystonia)

PROGRAMMING

Four variables

- Active contact in electrode (0,1,2,3-mono, bipolar/ double negative and so on)
- Amplitude of charge (in volts)
- Frequency (in hertz)
- Pulse width (in microseconds)
- Contributes to infinite combinations but we start with tried and tested ones
 - Low frequency (dystonia)
 - High and mid range frequencies (PD and tremor)
 - Higher pulse width (dystonia/ sometimes tremor)
- Programming can take 3-6 mo or longer

OUTCOMES

Deuschl, NEJM Aug. 2006

- Randomized trial of DBS for PD
- 156 patients
- DBS + Rx vs. Rx alone
- End points: 6 mo PDQ-39 & UPDRS-III
- Outcomes favored DBS
 - PDQ 75% vs. 25% (p<0.001)
 - UPDRS 85% vs. 13% (p<0.001)

OUTCOMES

RISKS

Goodman, et al 2006

100 Consecutive patients / 191 implanted devices

_	Infections		7 (3.7%)
_	Cerebral infarct		1
_	Intracerebral hemorrhage	1	
_	Subdural hemorrhage	1	
_	Air embolism	1	
_	Wound hematomas	2	
_	Skin erosions	2	
_	Seizures		3
_	Electrode revisions		6 (3.1%)
_	Mortality	0	
_	Permanent deficits	0	
-	TOTAL		24 (13%)

ANNUALIZED VM COMPLICATION RATE

© 2014 Virginia Mason Medical Center 2

RISKS DBS vs MEDICATION

Table 4. Adverse Events during the Six-Month Study.*			
Event	Neurostimulation Group	Medication Group	
	no. of events		
Serious adverse event†			
Death	3	1	
Perioperative cerebral hematoma	1	0	
Suicide 5 mo after surgery	1	0	
Car accident during psychotic episode	0	1	
Pneumonia	1	0	
Readmission to the hospital	7	2	
Worsening of mobility	3	1	
Infection at the stimulator site	2	0	
Erroneous stimulator shut-off	1	0	
Vertebral fracture from fall	1	0	
Hip fracture from fall	0	1	
Total nonserious adverse events;	77	96	
Mild	35	8	
Moderate	32	39	
Severe	10	49	

LIMITATIONS OF SURGERY

- Improvement limited by patient's best condition "on" medications
- Little effect on autonomic dysfunction
- Little effect on depression
- Akinesia, speech, postural stability, freezing of gait, and cognitive function worsen within 1 to 5 years
- Unknown (likely no) alteration in natural history of Parkinson's Disease

OTHER RISKS

THINGS TO REMEMBER

- DBS systems now (fully implanted Medtronic Activa system) are WHOLE BODY MRI COMPATIBLE
- Microwave, shortwave and ultrasound diathermy contraindicated

- Can be used in conjunction with pacemakers, as long as devices are compatible
- Newer devices not affected by household electronic equipment

FUTURE OF DBS

DEVICE RELATED:

- Battery life
- ? Remote monitoring
- Constant current
- ?Responsive neurostimulators
- ?Record data

EXPANDING THE HORIZON:

- Early PD
- Tourettes
- Cluster headaches
- ?Memory
- Epilepsy
- OCD

PROCEDURE RELATED:

- Awake vs asleep
- Miniature pulse generators
- CSF Glucose as power supply